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Abstract Aeromonas hydrophila has been implicated in
extra-intestinal infection and diarrhoea in humans. Targetting
unique effectors of bacterial pathogens is considered a
powerful strategy for drug design against bacterial variations
to drug resistance. The two-component bacterial system
involving sensor histidine kinase (SHK) and its response
regulators is considered a lucrative target for drug design.
This is the first report describing a three-dimensional (3D)
structure for SHK of A. hydrophila. The model was
constructed by homology modelling using the X-ray
structure of PleD—a response regulator—in conjunction
with cdiGMP (PDB code 1W25) and HemAT sensor domain
(PDB code 1OR4)—a globin coupled sensor. A combination
of homology modelling methodology and molecular dynam-
ics (MD) simulations was applied to obtain a reasonable

structure to understand the dynamic behaviour of SHK.
Homology modelling was performed using MODELLER9v2
software. The structure was relaxed to eliminate bad atomic
contacts. The final model obtained by molecular mechanics
and dynamics methods was assessed using PROCHECK and
VERIFY 3D graph, which confirmed that the final refined
model is reliable. Until complete biochemical and structural
data of SHK are determined by experimental means, this
model can serve as a valuable reference for characterising the
protein and could be explored for drug targetting by design of
suitable inhibitors.
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Abbreviations
SHK Sensor histidine kinase
EM Energy minimisation
BLAST Basic local alignment search tool
MDS Molecular dynamics simulation

Introduction

Aeromonas hydrophila, a Gram-negative rod-shaped
bacterium, is an autochthonous inhabitant of aquatic environ-
ments. This organism has been associated with intestinal and
extra-intestinal infections in humans [1, 2]. Moreover, this
organism has also been included in the contaminant candidate
list by the United States Environmental Protection Agency
[3]. A. hydrophila is known to produce several virulence
factors such as haemolysin, haemaglutinnin, cytolysin and
enterotoxin, and also exhibits resistance to normal human
serum [4–9]. Little is known about metabolic activity in A.
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hydrophila or the factors that facilitate its ecological
interactions with other prokaryotes or its host [10].

The ability of the bacterium to gauge parameters such as
ionic strength, concentration of nutrients and debilitating
compounds is a primary requisite for the organism to
inhabit a given environment. Sensor histidine kinase (SHK)
proteins are involved in signal transduction pathways in
bacteria. These proteins, in conjunction with a number of
response regulators, help to transduce signals from the
extracellular environment to intracellular stimuli [11]. A.
hydrophila is predicted to host about 31 SHKs paired with
cognate regulators [12]. It can be assumed that one or more
of these SHKs are involved in A. hydrophila virulence and
pathogenesis by sensing and responding to signals present
in the host environment.

SHKs act through sensing signals and responding
through response regulators, either paired or as stand-
alone proteins, to bring about changes in gene expression.
The sense and response activities are carried out by a number
of input and output domains in SHK. Various examples of
signal transduction and sensory input domains include the
HATPase_c (histidine kinase type ATPase catalytic) domain,
MA domain (methyl accepting chemotaxis), HPt (histidine
phospho transfer) domain, PAS (a domain identified in PER,
ARNT and SIM proteins of Drosophila), and GAF (a
domain common in cGMP phosphodiesterase, adenylyl
cyclase, FhlA), etc. [13].

Many SHKs harbour a unique catalytic domain, charac-
terised by the presence of the amino acid sequence G-G-D-E-
F—the GGDEF domain [14]. This catalytic domain of SHKs
is involved in the synthesis of cyclic diguanylate (CdiGMP),
which acts as a second messenger to stimuli and leads to
physiological responses [15]. CdiGMP regulates many
diverse functions, including developmental transitions, social
behaviour, adhesion, biofilm formation and virulence [16].

Fluoroquinolones have long been used for treatment for
Aeromonas infections. However, Aeromonas strains showing
resistance to nalidixic acid are known [17]. Tests of
susceptibility of A. hydrophila to antimicrobial drugs
revealed an increasing number of resistant phenotypes,
suggesting acquisition of drug resistance through horizontal
gene transfer [18]. These observations indicate the need to
examine novel avenues of drug design against this pathogen.

At present, rational drug design involves identification of
factors that inhibit virulence of pathogens without inhibit-
ing their growth. This approach will lead to decreased
selective pressure for development of drug resistance in the
bacterium [19]. SHKs are recognised as a favourite choice
for drug design against drug resistant bacteria because of
their presence in the bacterial signal transduction system,
which has no counterpart in the human host. SHKs in other
enteropathogenic bacteria have been used successfully to
evaluate the effectiveness of microbial inhibitors [20].

The preferred method for effective drug design is to build
a three-dimensional (3D) structure and screen for drugs
interacting with this structure. Protein function can be
understood in greater detail using 3D structural information.
Using X-ray crystallography, electron microscopy, diffraction
and NMR spectroscopy, the actual 3D structure of a protein
is obtained. However, no information is available on the
crystal structure of SHKs. This may be due to the intrinsic
difficulty of preparing high quality crystals of SHK. In the
absence of experimental data, models based on the known
3D structure of a homologous protein are the only reliable
method of obtaining structural information. Therefore, in the
present study, we built a 3D-structural model of SHK
(AHA_3297) based on the known 3D-structures of stalked-
cell differentiation controlling protein from Caulobacter
vibrioides (1W25) and the HemAT sensor domain from
Bacillus subtilis (1OR4) using homology methodology. This
is the first report describing a 3D structure of SHK,
AHA_3297 in A. hydrophila, which was earlier designated
as a potential drug target for A. hydrophila [21].

Materials and methods

Template search and sequence alignment

In the present investigation, the protein sequence of SHK
(AHA_3297) of A. hydrophila was retrieved from the NCBI
database (YP_857788.1). A BLASTP [22] search with
default parameters was performed against the Brook
Heaven Protein Data Bank (PDB) [23] to find suitable
templates for homology modelling. There was no single
template available in PDB that could be used to model
SHK, therefore, two templates were selected. Based on the
maximum identity with high score and lower e-value,
stalked-cell differentiation controlling protein from C.
vibrioides at 2.7 Å resolution (PDB code: 1W25) and the
crystal structure of the HemAT sensor domain from B.
subtilis at 2.15 Å resolution (PDB code: 1OR4) were used
as templates, showing similarity at the C- and N-terminus,
respectively, for homology modelling. Sequence identity
was 31% (similarity 50%) and 27% (similarity 52%)
between the target and templates 1W25 and 1OR4,
respectively. The ClustalW (http://www.ebi.ac.uk/clustalw)
[24] program was used for sequence alignment.

3D structure generation

The academic version of MODELLER (http//:www.salilab.
org/modeller) [25] was used for 3D structure generation
based on the information obtained from sequence align-
ment. In general, the homology modelling method is based
on the assumption that the structure of an unknown protein
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will be similar to the known structures of some reference
proteins. Out of 20 models generated by MODELLER, the
one with the best G-score of PROCHECK [26], and with
the best VERIFY3D [27] profile was subjected to energy
minimisation (EM). Using the parameters of a distance-
dependent dielectric constant ∈=1.0 and non-binding cutoff
of 14 Å, CHARMm [28], force field and CHARM-all-atom
charges, a steepest descent algorithm was used initially to
remove close van der Waals contacts, followed by
conjugate gradient minimisation until the energy was stable
in sequential repetitions. All hydrogen atoms were included
in the calculation. The EM was initiated with main chain of
the core, and then all core side chains were subjected to the
same procedure. All calculations were performed using
ACCELRYS DS Modelling 2.0 (Accelrys, San Diego, CA)
software suite. During these steps, the quality of the initial
model was improved. VERIFY3D (a structure evaluation
server) was used to check the residue profiles of the 3D
models obtained. STRIDE [29] was used in prediction of
secondary structure of the modelled SHK. PROCHECK
analysis was performed to assess the stereo-chemical
qualities of the 3D models.

Molecular dynamics simulation

A combination of homology modelling and molecular
dynamics (MD) simulation was applied to obtain a
reasonable structure that would allow exploration of its
dynamic behaviour. The structure was further relaxed to
eliminate bad atomic contacts and subsequently solvated
with water. The whole system was subjected to EM. A MD
simulation was carried out for 100 ps of simulation at
300 K after global minimisation using GROMACS 3.1.1
(http://www.gromacs.org). Root mean squares deviation
(RMSD) values of the final conformation of the modelled
protein are also presented. An SGI ALtix server running the

IRIX operating system was used to perform MD simulation
on GROMACS.

Prediction of transmembrane helices

Different servers (DAS, HMMTOP, TMHMM, TMMPRED)
were used to predict transmembrane helices in the SHK
protein sequence.

Results and discussion

Model building

No high resolution structure of any SHK conjugate with its
response regulator protein has yet been determined experi-
mentally [30]. Therefore, we built a model following a
homology modelling protocol. A BLASTP search with
default parameters was performed against PDB to find

Fig. 1 Ribbon representation of modelled sensor histidine kinase
(SHK). The α-helices and β-sheets are shown as helices and ribbons,
respectively. The rest of the structure is depicted as loops. The figure
was prepared using PyMol
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Fig. 2 Calculated root mean square deviation (RMSD) graph using
GROMACS software. x-axis Time (ps), y-axis RMSD
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Fig. 3 Calculated energy vs time plot using GROMACS software. x-axis
Time (ps), y-axis energy
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suitable templates for homology modelling. The N- and
C-terminal region of the SHK protein was then modelled
using the templates 1OR4 and 1W25, respectively. Sequence
alignment was performed using the program ClustalW. The
alignment was characterised by some insertions and deletions
in the loop regions. Since the first 23 residues from the N
terminal end had no corresponding equivalent region in
1OR4, modelling was carried out from the 24th residue of
the target protein. Modelling was followed by a rigorous
refinement of the model by means of EM. The final stable
structure of SHK obtained is shown in Fig. 1.

MD simulation

Based on intrinsic dynamics, structural stability and
improved relaxation of the modelled structure, the energy
and RMSD (Figs. 2, 3) of the energy-minimised structure,
which is an important criteria for the convergence of free
MD simulation, were calculated. The targeted MD simula-
tion provided better conformation for the 11-residue linker
fragment connecting both N and C terminal domains at the
lowest energy.

Protein structure validation

To validate the homology modelled SHK structure, a
Ramachandran plot was drawn and the structure was
analysed by PROCHECK, a well known protein structure
checking program. It was found that the phi/psi angles of
93.8% of residues fell in the most favoured regions, 4.6%
residues fell in the additional allowed regions, and 1.6% fell
in generously allowed regions; none of the residues fell in
the disallowed conformations (Fig. 4). The overall PRO-
CHECK G-factor for the homology modelled structure after
MD simulation was −0.06. This score indicates that the
modelled structure is acceptable because the recommended
value is greater than − 0.50. A decrease in the overall G
factor was observed after MD simulation. These observa-
tions thus indicate that an increase in the number of bad
dihedral angles of the modelled structure had occurred. This
may be due to MD simulation causing an unfavourable
dihedral angle, allowing the protein to overcome high
energy barriers. The structural superimposition of Ca trace
of the model on the two template structures 1OR4 and
1W25 (Fig. 5) resulted in RMSDs of 0.4 Å and 2.0 Å,
respectively, for the N-terminal and C-terminal domains
using the program Combinatorial Extension (CE; http://cl.
sdsc.edu/ce.html).

Fig. 4 Ramachandran map of SHK protein. The plot calculation on
the three-dimensional (3D) model of SHK protein was calculated with
the PROCHECK program

Fig. 5 Structural alignment of
N-terminal and C-terminal
domains of the modelled
structure with template
structures using the program
Combinatorial Extension (CE)
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STRIDE [29], which uses hydrogen bond energy and
main chain dihedral angles to recognise helix, coils and
strands, was used to predict the secondary structure (Fig. 6)
of the modelled SHK. We analysed SHK sequence using
different transmembrane prediction algorithms—DAS [31],
HMMTOP [32], TMHMM [33], TMPRED [34]—to predict
the transmembrane helices in the protein. These predicting
servers did not identify the presence of any transmembrane
helices in the SHK protein.

Conserved domain identification and sequence alignments
[35] were used, along with a protein BLAST [36, 37], to
determine the domains present in the A. hydrophila SHK,
AHA_3297. We found a sensor globin sensing domain and a
diguanylate cyclase domain (DGC) in the amino acid
sequences of this SHK.

The globin fold was characterised by the predominant
presence of α helices [38]. Various sensor domains, such as
HemAT, Dos, and FixL, are known to posses globin folds
and are grouped with the family of globin-coupled sensors
(GCS). Oligomeric haem-based sensors are known to be
mediators of responses to intra- and extra-cellular stimuli. A
globin-coupled sensor motif was also identified along with
a phosphodiesterase domain, in addition to histidine
kinases. A total of 17 amino acid residues were conserved
in the sensor globin domain. An amino acid sequence
comparison was carried out with the well characterised
oxygen sensor binding domain from B. subtilis—a repre-
sentative GCS—and other GCS proteins. The results
showed that, of the 17 conserved residues, 8 residues,
namely Phe (position 31), Tyr (positions 32, 95), Ile
(positions 45, 81, 88), Leu (position 54) and His (position
85) were conserved in AHA_3297. However, substantial
residue variation was observed at other positions known to
be conserved. The high rate of sequence variability may be
attributed to a specific signal sensing mechanism unique to
this protein. In the majority of haem-based sensors, except
those that contain a thiolate ligand, a conserved His residue
is thought to be involved in binding haem through
coordination [39]. We aligned the template with the targetFig. 7 Interaction of haem with SHK protein

Fig. 6 Secondary structure assignment of modelled SHK protein

Fig. 8 Ligplot of interaction of haem with SHK protein
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structure along with haem using all atom superposition in a
structural comparison program [40] to construct a complex
of haem plus template. This complex was subjected to EM
to study the binding residues involved in haem binding in
this protein in order to understand similarities with other
known sensor proteins. Tyr 32, Arg 53, and Glu 58 were
directly involved in binding of haem through hydrogen
bonding, whereas a number of other amino acid residues,
including His 85, showed involvement in binding of the
haem moiety through a coordination complex (Figs. 7, 8).

The DGC domain carries out the condensation of two
GTP to CdiGMP. The DGC or GGDEF domain occurs in
various combinations with sensory and/or regulatory
domains. The DGC domain consists of a five-stranded
central β-sheet surrounded by helices. The G-G-D-E-F
signature motif occurs at the central β hairpin. Around ten
amino acid residues appear to be conserved in proteins
carrying the GGDEF domain [41].

Of the ten residues conserved in the GGDEF domain, all
were present and conserved in SHK. A. hydrophila SHK,
AHA_3297 contained a conventional and conserved G-G-
D-E-F sequence at positions 258–262, which was present at
the β hairpin bend of the central β sheet. The catalytically
important Asp residues of the adenylate cyclase domain, as
observed in all known GGDEF domains, occurred at
positions 226 and 234 [42]. The presence of haem-
binding amino acid residues at the N-terminus showed that
this model is reliable, indicating that the sensing domain
belongs to the family of haem-based GCS. This implies that
this SHK may be involved in the intra-cellular signalling
mechanism that senses intra-cellular concentrations of
signals through the haem-based sensing domain. The high
degree of variability in amino acid sequences among
proteins of the same family indicate that there may be a
protein specific evolution to perceive unique signals or a
unique mechanism of signal perception in SHKs [13]. As
the SHK contains a GGDEF domain and does not possess a
region of homology with phophodiesterase domain, it can
be predicted that it acts mainly through regulation of cyclic-
diGMP levels. This molecular model can be used for
characterisation, structural analysis and drug design against
this SHK of A. hydrophila. Further biochemical and
structural characterisation of this protein will be required
to assign its precise functions.

Conclusions

Emergence of antibiotic resistance in pathogenic bacterial
strains is a common phenomenon. Therefore there is a
definite need to look at atypical drugs and drug targets in
order to outscore the bacterial pathogen. SHK is considered
to be one of the novel targets that can be exploited to

counteract the increasing menace of multi-drug resistance in
bacteria. Due to their precise inhibition of signalling
cascades, which lead to only low selective pressure on the
organism, causing a slowdown in the process of the
evolution of resistance, SHKs are one of the targets of
choice. The validation of a 3D structure of the A. hydrophila
SHK is a positive step towards the rational drug design to
combat this emerging human pathogen.
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